metal-organic papers

Received 18 July 2006

Accepted 24 July 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Bing-Xin Liu,<sup>a</sup> Hui-Gen Yan<sup>a</sup> and Duan-Jun Xu<sup>b</sup>\*

<sup>a</sup>Department of Chemistry, Shanghai University, People's Republic of China, and <sup>b</sup>Department of Chemistry, Zhejiang Unversity, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

#### **Key indicators**

Single-crystal X-ray study T = 295 K Mean  $\sigma$ (C–C) = 0.004 Å H-atom completeness 94% Disorder in solvent or counterion R factor = 0.038 wR factor = 0.098 Data-to-parameter ratio = 12.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# Bis[triaqua(2,2'-diamino-4,4'-bi-1,3-thiazole)isonicotinatozinc(II)] bis(isonicotinate) diaqua(2,2'diamino-4,4'-bi-1,3-thiazole)bis(isonicotinato)zinc(II) tetrahydrate

The crystal structure of the title compound,  $[Zn(C_6H_4NO_2)-(C_6H_6N_4S_2)(H_2O)_3]_2(C_6H_4NO_2)_2\cdot[Zn(C_6H_4NO_2)_2(C_6H_6N_4S_2)-(H_2O)_2]\cdot4H_2O$ , consists of four discrete components. In the neutral complex the Zn ion is located on a crystallographic twofold axis. The two thiazole rings of the diaminobithiazole ligand are twisted with respect to each other [dihedral angle = 13.85 (9)°] in the neutral complex but are coplanar [dihedral angle = 3.54 (15)°] in the cationic complex.  $\pi$ - $\pi$  stacking is observed between nearly parallel pyridine rings.

## Comment

Transition metal complexes of 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have shown potential application in the field of soft magnetic materials (Sun *et al.*, 1997). As part of a series of structural investigations of metal complexes with DABT (Liu *et al.*, 2003), the title Zn<sup>II</sup> complex has recently been prepared and its crystal structure is presented here.



The crystal structure of (I) consists of four discrete components: the  $Zn^{II}$  complex cation, isonicotinate anion, neutral  $Zn^{II}$  complex and uncoordinated water molecule (Fig. 1). Within the neutral complex, the Zn<sup>II</sup> ion is located on a twofold axis and coordinated by one DABT ligand, two isonicotinate anions and two water molecules. The two thiazole rings of DABT are twisted with respect to each other, with a dihedral angle of 13.85  $(9)^{\circ}$ , comparable to 14.7  $(3)^{\circ}$  found in a DABT complex of  $Cd^{II}$  (Zhang *et al.*, 2006) and 20.04 (8)° found in a DABT complex of Ni<sup>II</sup> (Liu & Xu, 2005). Within the complex cation, the Zn<sup>II</sup> ion is coordinated by one DABT ligand, one isonicotinate anion and three water molecules. The DABT ligand displays a planar configuration in the complex cation, the dihedral angle between the two thiazole rings being  $3.54 (15)^\circ$ , comparable to  $2.60 (10)^\circ$  found in a DABT complex of Mn<sup>II</sup> (Liu et al., 2006). The isonicotinate anion coordinates to the Zn<sup>II</sup> ion *via* the N atom. In both the neutral and the

© 2006 International Union of Crystallography

All rights reserved



## Figure 1

The structural components of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry codes: (ii) 1 - x, y,  $\frac{3}{2} - z$ ]. Solvent water molecules have been omitted for clarity.



### Figure 2

 $\pi$ - $\pi$  stacking between pyridine rings [symmetry code: (vi)  $\frac{3}{2} - x, \frac{1}{2} + y,$  $\frac{3}{2} - z$ ].

cationic complexes, the carboxylate groups of isonicotinate are coplanar with the pyridine rings. However, the carboxylate group of the free isonicotinate is twisted with respect to the pyridine plane, with a larger dihedral angle of  $50.98 (11)^{\circ}$ , which is considered to be a result of  $O-H \cdots O$  hydrogen bonding between the carboxylate group and coordinated water molecules of the adjacent cationic complex (Table 2).

A partially overlapped arrangement between pyridine rings is observed in the crystal structure (Fig. 2). The centroid-tocentroid separation of 3.7934 (18) Å between nearly parallel N41-pyridine and N51<sup>vi</sup>-pyridine rings [dihedral angle  $3.13(2)^{\circ}$  and the centroid-to-centroid separation of 3.5634 (17) Å between nearly parallel N51-pyridine and N21<sup>vi</sup>pyridine rings [dihedral angle 5.70 (3)°] [symmetry code: (vi)  $\frac{3}{2} - x, \frac{1}{2} + y, 3/2 - z$  indicate the existence of  $\pi - \pi$  stacking in the crystal structure of (I).

## **Experimental**

An aqueous solution (20 ml) containing DABT (1 mmol) and ZnCl<sub>2</sub> (1 mmol) was mixed with an aqueous solution (10 ml) of isonicotinic acid (2 mmol) and NaOH (2 mmol). The mixture was refluxed for 5 h. The solution was filtered after cooling to room temperature. Yellow single crystals of (I) were obtained from the filtrate after one week.

### Crystal data

| $[Zn(C_6H_4NO_2)(C_6H_6N_4S_2)-$   | $\beta = 108.967 \ (12)^{\circ}$          |
|------------------------------------|-------------------------------------------|
| $(H_2O)_3]_2(C_6H_4NO_2)_2$ .      | $V = 7079.9 (11) \text{ Å}^3$             |
| $[Zn(C_6H_4NO_2)_2(C_6H_6N_4S_2)-$ | Z = 4                                     |
| $(H_2O)_2]\cdot 4H_2O$             | $D_x = 1.632 \text{ Mg m}^{-3}$           |
| $M_r = 1739.72$                    | Mo $K\alpha$ radiation                    |
| Monoclinic, $C2/c$                 | $\mu = 1.27 \text{ mm}^{-1}$              |
| a = 36.196 (3)  Å                  | T = 295 (2) K                             |
| b = 10.1184 (9)  Å                 | Prism, yellow                             |
| c = 20.4410 (17)  Å                | $0.34 \times 0.25 \times 0.20 \text{ mm}$ |
|                                    |                                           |

## Data collection

Rigaku R-AXIS RAPID diffractometer  $\omega$  scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995)  $T_{\min} = 0.680, \ \bar{T}_{\max} = 0.780$ 

## Refinement

Refinement on  $F^2$  $w = 1/[\sigma^2(F_0^2) + (0.048P)^2]$  $R[F^2 > 2\sigma(F^2)] = 0.038$ + 6.9519P]  $wR(F^2) = 0.098$ where  $P = (F_0^2 + 2F_c^2)/3$ S = 1.04 $(\Delta/\sigma)_{\rm max} = 0.003$  $\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$ 6224 reflections  $\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$ 484 parameters H-atom parameters constrained

### Table 1 Selected bond lengths (Å).

| Zn1-O1  | 2.2077 (19) | Zn1-N21 | 2.166 (2)   |
|---------|-------------|---------|-------------|
| Zn1-O2  | 2.1218 (19) | Zn2-O4  | 2.1447 (18) |
| Zn1-O3  | 2.1178 (18) | Zn2-N31 | 2.146 (2)   |
| Zn1-N11 | 2.102 (2)   | Zn2-N41 | 2.161 (2)   |
| Zn1-N13 | 2.140 (2)   |         |             |

17955 measured reflections

 $R_{\rm int} = 0.027$ 

 $\theta_{\rm max} = 25.0^{\circ}$ 

6224 independent reflections

5136 reflections with  $I > 2\sigma(I)$ 

| Table 2       |          |     |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| $D - H \cdots A$                     | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------------------|------|-------------------------|--------------|--------------------------------------|
| O1−H1A···O52                         | 0.81 | 2.08                    | 2.856 (3)    | 161                                  |
| $O1-H1B\cdots O51^{i}$               | 0.85 | 2.02                    | 2.859 (3)    | 172                                  |
| $O2-H2A\cdots O51$                   | 0.85 | 1.85                    | 2.702 (4)    | 179                                  |
| $O2-H2B\cdots O42$                   | 0.84 | 1.84                    | 2.660 (3)    | 166                                  |
| $O3-H3A\cdots O52^{i}$               | 0.82 | 1.89                    | 2.686 (3)    | 165                                  |
| O3−H3 <i>B</i> ···O41                | 0.84 | 1.79                    | 2.634 (3)    | 177                                  |
| $O4-H4A\cdots O22^{ii}$              | 0.85 | 1.85                    | 2.699 (3)    | 173                                  |
| $O4-H4B\cdots O21$                   | 0.93 | 1.81                    | 2.741 (3)    | 175                                  |
| $O1W-H1WA\cdots O21$                 | 0.92 | 1.81                    | 2.720 (4)    | 168                                  |
| $O1W-H1WB\cdots O2WA$                | 0.93 | 1.89                    | 2.799 (14)   | 167                                  |
| $O1W-H1WB\cdots O2WB$                | 0.93 | 2.01                    | 2.873 (19)   | 154                                  |
| N12-H12A···O3                        | 0.83 | 2.22                    | 2.972 (4)    | 151                                  |
| $N12-H12B\cdots O22^{iii}$           | 0.83 | 2.00                    | 2.803 (3)    | 161                                  |
| N14-H14A···O2                        | 0.87 | 2.27                    | 3.061 (4)    | 151                                  |
| N14 $-$ H14 $B$ ···O42 <sup>iv</sup> | 0.82 | 2.12                    | 2.929 (3)    | 171                                  |
| N32-H32A···O4                        | 0.84 | 2.35                    | 3.117 (3)    | 153                                  |
| $N32-H32B\cdots O41^{v}$             | 0.83 | 2.19                    | 2.980 (3)    | 159                                  |

Symmetry codes: (i)  $-x + \frac{3}{2}, -y + \frac{3}{2}, -z + 1$ ; (ii)  $-x + 1, y, -z + \frac{3}{2}$ ; (iii)  $x, -y + 1, z - \frac{1}{2}$ ; (iv)  $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$ ; (v) -x + 1, -y + 2, -z + 1.

One solvent water molecule is disordered over two sites; occupancies were refined and converged to 0.54 (3) and 0.46 (3). H atoms of the disordered water molecule were not located. H atoms of the amino groups and the ordered water molecules were located in a difference Fourier map and refined as riding in their as-found relative positions [O-H = 0.81-0.93 Å, N-H = 0.82-0.87 Å] with  $U_{iso}(H) =$  $1.5U_{eq}(O,N)$ . Other H atoms were placed in calculated positions with C-H = 0.93 Å and refined in riding mode with  $U_{iso}(H) = 1.2U_{eq}(C)$ .

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The project was supported by the Educational Development Foundation of Shanghai Educational Committee, China (AB0448).

## References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Liu, B.-X., Ge, H.-Q. & Xu, D.-J. (2006). Acta Cryst. E62, m1439-m1441.
- Liu, J.-G., & Xu, D.-J. (2005). J. Coord. Chem. 58, 735-740.
- Liu, J.-G., Xu, D.-J., Sun, W.-L., Wu, Z.-Y., Xu, Y.-Z., Wu, J.-Y. & Chiang, M. Y. (2003). J. Coord. Chem. 56, 71–76.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.

- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sun, W.-L., Gao, X. & Lu, F.-J. (1997). Appl. Polym. Sci. 64, 2309-2315.

Zhang, L.-J., Liu, B.-X., Ge, H.-Q. & Xu, D.-J. (2006). Acta Cryst. E62. m1944– m1945.